

IoT VHF Testbed Rules

November 2018

Purpose

This document describes a fixed term licensing arrangement for the use of Internet of Things (IoT) devices in the upper VHF band (210 - 220 MHz). Licences for using this band for IoT deployment are available by applying through Approved Persons¹, similar to the way that other radio licences are applied for.

Background

Ministerial decisions were undertaken in 2016 about reusing the former analogue television VHF band III block of spectrum (174 – 230 MHz) for new usages. It was provisionally agreed that 10 MHz of spectrum between 210 and 220 MHz has been set aside for the use as an IoT test bed. The aim of this IoT test bed is to provide an additional block of spectrum for IoT use, particularly to facilitate trials of non-standardised IoT ecosystem.

IoT networks by their nature have a broad definition. However they generally have one or more of the following characteristics:

- Operate in a Point to Multi-Point or mesh network configuration
- Low duty cycle
- Narrow bandwidth
- Use shared spectrum resource

Although a General User Radio Licence (GURL) would provide a very simple licensing option, being able to track the use of the band would not be easy. RSM has therefore decided to institute a radio licensing regime that is based on the situation that exists for shared land mobile simplex operation. This allows licences to be issued (for RSM to track usage of the band). Similar to a land mobile simplex operation, this also means that devices operating in a particular channel must accept transmissions from other users of that channel. This is similar to the situation if an IoT network were to be deployed in spectrum permitted through provisions within a GURL.

Types of technology permitted

RSM will not be mandating any specific technology or standard. However during the licensing process, the equipment that is to be deployed by the licence must be noted in the equipment section of the licence detail.

As the channel is likely to be shared with other users in the same geographic area, equipment has to accept transmissions from other IoT equipment operating in the same channel. RSM does not intend to impose duty cycle limits at this stage.

Security of Tenure

As this band is for testing purposes, each licence will be initially issued for one year. Licences may be renewed up to two times (allowing a total tenure of up to three years). RSM

2

¹ Approved Radio Certifiers and Approved Radio Engineers.

anticipates to review the feasibility of maintaining this testbed or to turn this into a long term allocation sometime in 2022.

Channel Plan

RSM has considered existing IoT technologies and standards, as well as the FCC's part 90.259 land mobile radio devices that are permitted to operate in the band 217 - 220 MHz. Almost all IoT services reviewed have an option to have an emission that is less than 200 kHz^2 .

Therefore having 200 kHz channelling would allow for a significant number of current popular IoT protocols to be transposed into this band if desired. Table one outlines a channel plan for the band.

Table One – IoT testbed channel plan

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
IoT1	210.100	IoT14	212.700	IoT27	215.300	IoT40	217.900
IoT2	210.300	loT15	212.900	loT28	215.500	loT41	218.100
IoT3	210.500	loT16	213.100	loT29	215.700	IoT42	218.300
IoT4	210.700	loT17	213.300	loT30	215.900	IoT43	218.500
IoT5	210.900	IoT18	213.500	loT31	216.100	IoT44	218.700
IoT6	211.100	loT19	213.700	loT32	216.300	loT45	218.900
IoT7	211.300	loT20	213.900	IoT33	216.500	IoT46	219.100
IoT8	211.500	loT21	214.100	IoT34	216.700	IoT47	219.300
IoT9	211.700	loT22	214.300	IoT35	216.900	IoT48	219.500
IoT10	211.900	loT23	214.500	IoT36	217.100	IoT49	219.700
IoT11	212.100	IoT24	214.700	IoT37	217.300	loT50	219.900
loT12	212.300	IoT25	214.900	IoT38	217.500		
loT13	212.500	IoT26	215.100	IoT39	217.700		

IoT VHF Testbed Rules

.

 $^{^{2}}$ The Zigbee band plan has a 2MHz channel width in the 2 400 – 2 483.5 MHz ISM band.

Licensing arrangements

Shared Service

Licences will be allocated on a first come first served basis. The band will be licensed in a similar fashion to those in the land mobile radio simplex system.

Power

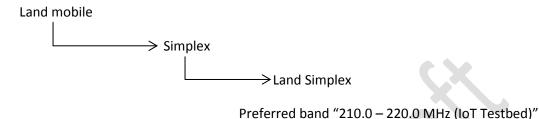
Maximum power of up to -7dBW (200 milliwatts) e.i.r.p. is permitted. This is a balance between the power limits that are available to IoT networks and that equipment that is certified for the US land mobile band (2 watts). The EIRP that the device is capable of must be stated on the licence (up to the maximum power as permitted).

Permitted Emissions

As part of the licensing process, emission bandwidth must be specified as per the ITU emission designator codes. Each potential emission that would be used by the licensee must be specified on the licence.

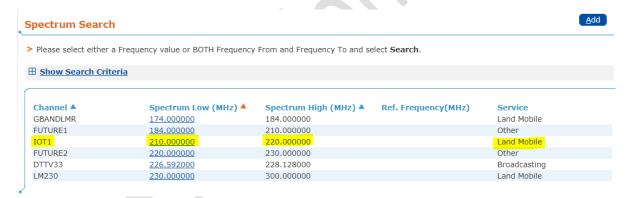
The following emissions as shown in table two are pre-populated on a planned spectrum record to provide a template for applicants. However the Approved Person shall modify the emission designators on the licence as appropriate to recognise all potential emissions that would be used by the licensee on that specific licence (up to 200 kHz). Approved Persons shall also remove any superfluous emissions designators.

Table Two - Prepopulated emissions for spectrum records in the IoT test bed


Protocol	Designator
Sigfox	192KD2D
NB-IoT	180KW7D
Zigbee	40K0GXW
LoRa	125KX1D
FCC part 90	44K5G1D

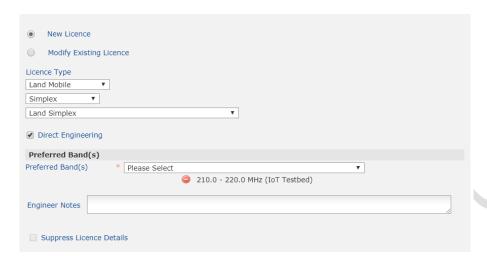
Licensing services in the IoT band

As outlined in the background section, licensing services in this IoT band will be similar to the licensing process that is undertaken to land mobile radio simplex system.


Approved Persons should undertake licensing in the following way:

Use direct engineering and select the following licence type:

Select the spectrum band record in the Register of Radio Frequencies, as shown below in figure one:


Figure One - IoT Testbed spectrum record

Application:

When the appropriate IoT spectrum record has been selected, direct engineering shall be selected, as shown in figure two.

Figure Two - Licence application with direction engineering

The location must be defined as a defined area for a Territorial Local Authority (TLA). Only one TLA may be specified on a licence as well.

The equipment that will be used under the licence must also be noted in the licence. Equipment details can't be added when carrying out a direct engineering application, however transmit and receive equipment can be added to the licence.

In addition, the Approved Person must note in the licence's basic details, the number of sets that are proposed to be deployed for the duration of the licence. This is to enable RSM to track usage of the band.